Pandora
Pandora source code navigator
Loading...
Searching...
No Matches
lar_content::AdaBoostDecisionTree Class Reference

AdaBoostDecisionTree class. More...

#include "LArAdaBoostDecisionTree.h"

Inheritance diagram for lar_content::AdaBoostDecisionTree:
Collaboration diagram for lar_content::AdaBoostDecisionTree:

Classes

class  Node
 Node class used for representing a decision tree. More...
 
class  StrongClassifier
 StrongClassifier class used in application of adaptive boost decision tree. More...
 
class  WeakClassifier
 WeakClassifier class containing a decision tree and a weight. More...
 

Public Member Functions

 AdaBoostDecisionTree ()
 Constructor.
 
 AdaBoostDecisionTree (const AdaBoostDecisionTree &rhs)
 Copy constructor.
 
AdaBoostDecisionTreeoperator= (const AdaBoostDecisionTree &rhs)
 Assignment operator.
 
 ~AdaBoostDecisionTree ()
 Destructor.
 
pandora::StatusCode Initialize (const std::string &parameterLocation, const std::string &bdtName)
 Initialize the bdt model.
 
bool Classify (const LArMvaHelper::MvaFeatureVector &features) const
 Classify the set of input features based on the trained model.
 
double CalculateClassificationScore (const LArMvaHelper::MvaFeatureVector &features) const
 Calculate the classification score for a set of input features, based on the trained model.
 
double CalculateProbability (const LArMvaHelper::MvaFeatureVector &features) const
 Calculate the classification probability for a set of input features, based on the trained model.
 

Private Types

typedef std::map< int, const Node * > IdToNodeMap
 
typedef std::vector< const WeakClassifier * > WeakClassifiers
 

Private Member Functions

double CalculateScore (const LArMvaHelper::MvaFeatureVector &features) const
 Calculate score for input features using strong classifier.
 

Private Attributes

StrongClassifierm_pStrongClassifier
 Strong adaptive boost tree classifier.
 

Detailed Description

AdaBoostDecisionTree class.

Definition at line 27 of file LArAdaBoostDecisionTree.h.

Member Typedef Documentation

◆ IdToNodeMap

typedef std::map<int, const Node *> lar_content::AdaBoostDecisionTree::IdToNodeMap
private

Definition at line 191 of file LArAdaBoostDecisionTree.h.

◆ WeakClassifiers

Definition at line 264 of file LArAdaBoostDecisionTree.h.

Constructor & Destructor Documentation

◆ AdaBoostDecisionTree() [1/2]

lar_content::AdaBoostDecisionTree::AdaBoostDecisionTree ( )

Constructor.

Definition at line 18 of file LArAdaBoostDecisionTree.cc.

◆ AdaBoostDecisionTree() [2/2]

lar_content::AdaBoostDecisionTree::AdaBoostDecisionTree ( const AdaBoostDecisionTree rhs)

Copy constructor.

Parameters
rhsthe AdaBoostDecisionTree to copy

Definition at line 24 of file LArAdaBoostDecisionTree.cc.

◆ ~AdaBoostDecisionTree()

lar_content::AdaBoostDecisionTree::~AdaBoostDecisionTree ( )

Destructor.

Definition at line 41 of file LArAdaBoostDecisionTree.cc.

Member Function Documentation

◆ CalculateClassificationScore()

double lar_content::AdaBoostDecisionTree::CalculateClassificationScore ( const LArMvaHelper::MvaFeatureVector features) const
virtual

Calculate the classification score for a set of input features, based on the trained model.

Parameters
featuresthe input features
Returns
the classification score

Implements lar_content::MvaInterface.

Definition at line 126 of file LArAdaBoostDecisionTree.cc.

Here is the call graph for this function:

◆ CalculateProbability()

double lar_content::AdaBoostDecisionTree::CalculateProbability ( const LArMvaHelper::MvaFeatureVector features) const
virtual

Calculate the classification probability for a set of input features, based on the trained model.

Parameters
featuresthe input features
Returns
the classification probability

Implements lar_content::MvaInterface.

Definition at line 133 of file LArAdaBoostDecisionTree.cc.

Here is the call graph for this function:

◆ CalculateScore()

double lar_content::AdaBoostDecisionTree::CalculateScore ( const LArMvaHelper::MvaFeatureVector features) const
private

Calculate score for input features using strong classifier.

Parameters
featuresthe input features
Returns
score

Definition at line 142 of file LArAdaBoostDecisionTree.cc.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ Classify()

bool lar_content::AdaBoostDecisionTree::Classify ( const LArMvaHelper::MvaFeatureVector features) const
virtual

Classify the set of input features based on the trained model.

Parameters
featuresthe input features
Returns
the classification

Implements lar_content::MvaInterface.

Definition at line 119 of file LArAdaBoostDecisionTree.cc.

Here is the call graph for this function:

◆ Initialize()

StatusCode lar_content::AdaBoostDecisionTree::Initialize ( const std::string &  parameterLocation,
const std::string &  bdtName 
)

Initialize the bdt model.

Parameters
parameterLocationthe location of the model
bdtNamethe name of the model
Returns
success

Definition at line 48 of file LArAdaBoostDecisionTree.cc.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ operator=()

AdaBoostDecisionTree & lar_content::AdaBoostDecisionTree::operator= ( const AdaBoostDecisionTree rhs)

Assignment operator.

Parameters
rhsthe AdaBoostDecisionTree to assign

Definition at line 31 of file LArAdaBoostDecisionTree.cc.

Member Data Documentation

◆ m_pStrongClassifier

StrongClassifier* lar_content::AdaBoostDecisionTree::m_pStrongClassifier
private

Strong adaptive boost tree classifier.

Definition at line 325 of file LArAdaBoostDecisionTree.h.


The documentation for this class was generated from the following files: