Pandora
Pandora source code navigator
Loading...
Searching...
No Matches
lar_content::LArPcaHelper Class Reference

LArPcaHelper class. More...

#include "LArPcaHelper.h"

Public Types

typedef pandora::CartesianVector EigenValues
 
typedef std::vector< pandora::CartesianVectorEigenVectors
 
typedef std::pair< const pandora::CartesianVector, double > WeightedPoint
 
typedef std::vector< WeightedPointWeightedPointVector
 

Static Public Member Functions

template<typename T >
static void RunPca (const T &t, pandora::CartesianVector &centroid, EigenValues &outputEigenValues, EigenVectors &outputEigenVectors)
 Run principal component analysis using input calo hits (TPC_VIEW_U,V,W or TPC_3D; all treated as 3D points)
 
static void RunPca (const WeightedPointVector &pointVector, pandora::CartesianVector &centroid, EigenValues &outputEigenValues, EigenVectors &outputEigenVectors)
 Run principal component analysis using weighted input Cartesian vectors (TPC_VIEW_U,V,W or TPC_3D; all treated as 3D points)
 

Detailed Description

LArPcaHelper class.

Definition at line 21 of file LArPcaHelper.h.

Member Typedef Documentation

◆ EigenValues

◆ EigenVectors

Definition at line 25 of file LArPcaHelper.h.

◆ WeightedPoint

Definition at line 26 of file LArPcaHelper.h.

◆ WeightedPointVector

Definition at line 27 of file LArPcaHelper.h.

Member Function Documentation

◆ RunPca() [1/2]

template<typename T >
void lar_content::LArPcaHelper::RunPca ( const T &  t,
pandora::CartesianVector centroid,
EigenValues outputEigenValues,
EigenVectors outputEigenVectors 
)
static

Run principal component analysis using input calo hits (TPC_VIEW_U,V,W or TPC_3D; all treated as 3D points)

Parameters
tthe input information
centroidto receive the centroid position
outputEigenValuesto receive the eigen values
outputEigenVectorsto receive the eigen vectors

Definition at line 21 of file LArPcaHelper.cc.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ RunPca() [2/2]

void lar_content::LArPcaHelper::RunPca ( const WeightedPointVector pointVector,
pandora::CartesianVector centroid,
EigenValues outputEigenValues,
EigenVectors outputEigenVectors 
)
static

Run principal component analysis using weighted input Cartesian vectors (TPC_VIEW_U,V,W or TPC_3D; all treated as 3D points)

Parameters
pointVectora vector of pairs of positions and weights
centroidto receive the centroid position
outputEigenValuesto receive the eigen values
outputEigenVectorsto receive the eigen vectors

Definition at line 33 of file LArPcaHelper.cc.

Here is the call graph for this function:

The documentation for this class was generated from the following files: